MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


DE  ANCELMO LUIZ GRACELI  [BRASILEIRO].



FÍSICA GRACELI DIMENSIONAL. [dimensionismo indeterminado Graceli].




  MECÃNICA GRACELI GERAL - QTDRC.




equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS FÍSICOS, TIPOS E CARACTERITÍCAS, E POTENCIAIS FÍSICOS DAS ESTRUTURAS, DOS ELEMENTOS QUÍMICOS, ENERGIAS E NÍVEIS DE ENERGIAS, POTENCIAIS DE INTERAÇÕES , CONDUÇÕES, EMISSÕES, DESINTEGRAÇÕES, ABSORÇÕES, E OUTROS.

*= DIMENSÕES DE GRACELI = ESTADOS DE FASES E INTERMEDIÁRIOS DE TEMPERATURA, ELETROMAGNETISMO,  ENTROPIA, VIBRAÇÕES. E OUTROS.

LEVANDO E UM  SISTEMA DE FASES ÍNFIMAS, TEMOS UM SISTEMA DIMENSIONAL INDETERMINADO.

   *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.

CONFORME  A TEORIA DE GRACELI DO AFASTAMENTO DOS PLANETAS E SATÉLITES, A TERRA DO AMANHÂ SERÁ O MARTE DE  HOJE, E QUE  FOI O VÊNUS DE HOJE, O MESMO SERVE PARA MARTE DE ONTEM. ISTO EXPLICA PORQUE SE TEM MARCAS DE RIOS EM MARTE.


ψ     [   ]    .


*  .

ψ   .


                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


  = temperatura.




ψ     [ / ]   / [

 [ , ]]

  ) [

,] / [    ]     .




ψ        / [ [ ] [ , ]

  ] ]    .




   / [ , ]

  ) [[ ]]

ψ

] ]  .



 ψ   / [ [  , ]

 ] 
ψ

] /    .



ψ  /     / [ ]  [

  ) [[ ]] ][ , ]

ψ

] .   . 



ψ         [ [ ] [ , ]

 ] 
ψ

]   .



 ψ        [ [ ]]

 [ 
 , ]
ψ

]]   .




ψ       / [ 

[ ] [ , ]

] ]    .






ψ   / [ [ ]]

 , ]
ψ

] /     .




*  [ ]]


ψ [
 , ]

 / ] ]] .








    [[ ]]/

] [
 , ]
ψ

]] .





ψ [[ ]]

 ]  , ]

ψ

]/ ]  .










  / [ [ ]]

] ]  , ]

ψ ]  .




ψ      [  [ ] , ]

  ψ ] / ]    .






ψ     [

] /      [[ ] , ]

     .






ψ  [[[ ]]  ) [

ψ [] , 
]










ψ     [ [[ ]]

  ) [ , 

,] /  ψ     .



   [[ ]] /   )[ , ]

, ] / ψ   .


magnetão de Bohr, referido em alguns textos como magneton de Bohr, (símbolo ) é uma constante física relacionada com o momento magnético que recebe seu nome do físico Niels Bohr. Pode ser expresso em térmos de outras constantes elementares como:

onde:

 é a carga elementar,
 é a constante de Planck reduzida,
 é a massa em repouso do elétron

No sistema internacional de unidades se valor é aproximadamente:

 = 9,274 008 99(37)·10-24 J·T-1

No sistema CGS de unidades seu valor é aproximadamente:

 = 9,274 008 99(37)·10-21 erg·G-1




  •  é a massa da partícula.
  •  é a carga da partícula.
  •  é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
  •  é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são: 
  •  é o vetor de três componentes do potencial magnético.
  •  é o potencial escalar elétrico.

[ ]




Reflexão e tunelamento através de uma barreira potencial por um pacote de ondas. Uma parte do pacote de ondas passa através da barreira, o que não é possível pela física clássica.

Uma analogia comumente utilizada para explicar o fenômeno do tunelamento quântico consiste em se imaginar uma colina e um trenó subindo em direção ao seu cume. À medida que o trenó vai subindo a colina, parte de sua energia cinética transforma-se em energia potencial gravitacional U. Quando o cume da colina é atingido, o trenó tem energia potencial Ub. Se a energia mecânica inicial E do trenó for maior que Ub, o trenó poderá chegar até o outro lado da colina. Contudo, se E for menor que Ub, a física clássica garante que não existe a possibilidade de o trenó ser encontrado do outro lado da colina. Na mecânica quântica, porém, existe uma probabilidade finita de que esse trenó apareça do outro lado, movendo-se para a direita com energia E, como se nada tivesse acontecido. Dizemos que a colina se comporta como uma barreira de energia potencial, exemplificando de maneira simplista o efeito Túnel.[9]

Considerando um elétron e a densidade de probabilidade  da onda de matéria associada a ele, pode-se considerar três regiões: antes da barreira potencial (região I), a região de largura L da barreira (região II) e uma região posterior à barreira (região III). A abordagem da mecânica quântica é baseada na equação de Schrödinger, a qual tem solução para todas as três regiões. Nas regiões I e III, a solução é uma equação senoidal, enquanto na segunda a solução é uma função exponencial. Nenhuma das probabilidades é zero, embora na região III a probabilidade seja bem baixa.[5]

O coeficiente de transmissão (T) de uma determinada barreira é definido como uma fração dos elétrons que conseguem atravessá-la. Assim, por exemplo, se T= 0,020, isso significa que para cada 1000 elétrons que colidem com a barreira, 20 elétrons (em média) a atravessam e 980 são refletidos.

 , 

Por causa da forma exponencial da equação acima, o valor de T é muito sensível às três variáveis de que depende: a massa m da partícula, a largura L da barreira e a diferença de energia (Ub – E) entre a energia máxima da barreira e a energia da partícula. Constatamos também pelas equações que T nunca pode ser zero


Comentários

Postagens mais visitadas deste blog